
ClojureScript
as a compilation target to JS

Michiel Borkent @borkdude
Vijay Kiran @vijaykiran

FP AMS October 16th 2014

This work is licensed under a Creative Commons Attribution 4.0 International
License.

https://twitter.com/borkdude
https://twitter.com/vijaykiran
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Agenda

● History and Rationale of ClojureScript
● ClojureScript: advantages over JS
● Syntax compared
● React + ClojureScript
● Om
● Reagent

Introduction

Michiel

Vijay

Full Clojure stack examples @ Finalist
● Clojure + Liberator +

Datomic backend
● ClojureScript + Om

frontend
● Plain SVG graphs, home

made, no JS libs used
● Integrates multiple systems

(resource planner,
Salesforce, billing system,
etc)

● Runs on Immutant. Uses
Immutant job scheduling for
refreshing results

Typical in-house "ugly" app.
Very light weight, quickly
programmed, quick results. Useful
information during meetings.

Full Clojure stack examples @ Finalist
Same stack. Real commercial app.

Fairly complex UI

● Menu: 2 "pages"

Page 1:

Dashboard. Create new or select
existing entity to work on.

Then:

● Wizard 1
○ Step 1..5
○ Each step has

component
● Wizard 1 - Step2

○ Wizard 2
■ Step 1'
■ Step 2'

Full Clojure stack examples @ Finalist

Step 2 of inner wizard:

● Three dependent dropdowns
+ backing ajax calls

● Crud table of added items +
option to remove

● When done: create
something based on all of
this on server and reload
entire "model" based on
what server says

Because of React + Om we didn't
have to think about updating DOM
performantly or keeping "model" up
to date.

ClojureCup Entry

- Clojure
Backend

- Om Front-End

Brief history of ClojureScript

June 20th 2011: first release of ClojureScript

Brief history of ClojureScript
Early 2012: first release of lein cljsbuild
Leiningen plugin to make ClojureScript development easy

Brief history of ClojureScript

Brief history of ClojureScript
April 2012:
persistent data structures were ported

Light Table
June 2012
Funded as Kickstarter Project
Interactive, experimental IDE written in
ClojureScript, running on Node Webkit

Became open source early 2014

Brief history of ClojureScript
October 2012: ClojureScript Up and Running - O'Reilly

Brief history of ClojureScript

June 2013: core.async was announced

Brief history of ClojureScript
September 2013: source maps
Lets you debug ClojureScript directly from the browser.

Brief history of ClojureScript
December 2013: ClojureScript interfaces to React

Brief history of ClojureScript
August 2014

ClojureScript: rationale
● JavaScript is ubiquitous, but not a robust and concise language

Requires a lot of discipline to only use "the good parts"
● JavaScript is taking over in the browser: UI logic from server to client
● JavaScript is not going away in the near future
● Advanced libraries and technologies exist to optimize JavaScript:

Google Closure
● Clojure is a robust and concise language
● ClojureScript targets JavaScript by adopting Google Closure's strategy
● Brings Clojure goodness to JavaScript environments
● Clojure is designed to play well with host (does not aim to be cross

platform compatible)

Advantages over JavaScript
● less cognitive load for Clojure programmers
● less wat
● functional programming
● immutable/persistent data structures
● namespaces
● destructuring
● macros - code as data

https://www.destroyallsoftware.com/talks/wat

Advantages over JavaScript

● EDN vs JSON
● core.async - solves callback hell
● sequence abstraction: many composable functions on

whatever data structure that implements ISeq
● transducers: algorithm decoupled from concrete

sequential data structures and/or channels
● core.typed
● able to share code across client/server (cljx)

JavaScript - ClojureScript

console.log("Hello, world!");
(.log js/console "Hello, world!")
or
(println "Hello, world!")

no implementation (ns my.library
 (:require [other.library :as other]))

var foo = "bar";
(def foo "bar")

function foo() {
 var bar = 1;
}

(defn foo []

 (let [bar 1]))

// In JavaScript locals are mutable

function foo(x) {

 x = "bar";

}

;; this will issue an error

(defn foo [x]

 (set! x "bar"))

source: http://himera.herokuapp.com/synonym.html

http://himera.herokuapp.com/synonym.html

JavaScript - ClojureScript

No implementation

(def v (vector))

(def v [])

(def v [1 2 3])

(conj v 4) ;; => [1 2 3 4]

(get v 0) ;; => 1

(v 0) ;; => 1

No implementation (def s (set))

(def s #{})

(def s #{"cat" "bird" "dog"})

(conj s "cat") ;; => #{"cat" "bird" "dog"}

(contains? s "cat") ;; true

(s "cat") ;; "cat"

(s "fish") ;; nil

No implementation (def m (hash-map))

(def m {})

(def m {:foo 1 :bar 2})

(conj m [:baz 3]) ;; => {:foo 1 :bar 2 :baz 3}

(assoc m :foo 2) ;; => {:foo 2 :bar 2}

(get m :foo) ;;= > 2

(m :foo) ;;= > 2

source: http://himera.herokuapp.com/synonym.html

http://himera.herokuapp.com/synonym.html

JavaScript - ClojureScript

if (bugs.length > 0) {
 return 'Not ready for release';
}
else
{
 return 'Ready for release';
}

(if (pos? (count bugs))
 "Not ready for release"
 "Ready for release")

function foo() {

 var bar = 1;

 var baz = 2;

 return bar + baz;

}

foo(); // 3

(defn foo []
 (let [bar 1
 baz 2]
 (+ bar baz))
(foo) ;; => 3

source: http://himera.herokuapp.com/synonym.html

http://himera.herokuapp.com/synonym.html

core.async + transducer
without transducer: creates intermediate hash-map of response

with transducer: no need for intermediate hash-map

core.typed (JVM)

cljs.core.typed

Weasel (browser connected REPL)

figwheel: live code reloading

core.async

transducers

EDN

ClojureScript

persistent data
structures

(immutable)

atoms (mutable)

Generated
optimized
JavaScript

Google
Closure

JavaScript
libraries

your program

Compiler

ClojureScript libs

Mutable state
Atoms are mutable references to immutable values.
Isolation of mutation.
One of 4 kinds of mutable references in Clojure.
(the others: vars, refs and agents)

In JVM Clojure:

1 (def my-atom (atom 1)) ;; atom with long in it
2 (deref my-atom) ;; 1
3 @my-atom ;; same, 1
4 (reset! my-atom 2)
5 @my-atom ;; now atom contains 2
6 (doseq [i (range 100)]
7 (future (reset! my-atom (inc @my-atom))))
8 @my-atom ;; 95, OMG, WHY!!!

Mutable state
Atoms are atomically updated only via swap!

● swap! takes a function of one or more arguments
● the function receives the old value of the atom as the first argument
● in ClojureScript you don't have this concurrency problem, but you still want to

use the correct semantics (e.g. for Reagent atoms)

1 (def my-atom (atom 1))
2 (swap! my-atom (fn [old-value]
3 (inc old-value)))
4 (swap! my-atom inc) ;; same
5 @my-atom ;; 3, inc-ed two times so far
6 (doseq [i (range 100)]
7 (future (swap! my-atom inc))))
8 @my-atom ;; 103, that's better

Web Applications

- Application State
- Undo!

- User Interface & Interaction
- Responding to changes in state & user actions

- Back-End integration
- REST
- WebSockets

Web App Dev in ClojureScript

An incomplete history
- Google Closure Libraries (goog.*)
- ClojureScriptOne (now defunct)
- WebFUI
- Pedestal.io - app library
- Hoplon

Web App Dev in ClojureScript

The Age of React
- Om
- Reagent

React
● Developed by Facebook
● Helps building reusable/composable UI components

○ V in MVC
● Leverages virtual DOM for performance

○ “dirty checking”
● Unidirectional Data Flow

○ vs. Data-binding
● Can render on “server-side”

○ To make apps crawler-friendly

React LifeCycle Methods

Mounting Updating Unmounting

● willMount
● didMount

● willReceiveProps
● shouldComponentUpdate
● willUpdate
● didUpdate

● willUnmount

- Vaguely resembles Cocoa/UIKit

Om

ClojureScript Interface to React.js

React + ClojureScript
Both Reagent and Om leverage
- immutability for faster comparison in
shouldComponentUpdate

- Fewer redraws by batching updates with
requestAnimationFrame

● Protocols to represent the React’s Life Cycle
○ IWillMount, IDidUpdate, IWillUnmount etc.

● Om Component
○ a function that returns reified instances

● Component State
○ Cursor into App State

Om - Core Concepts

Om - Application Architecture
- Application State

- Global app-state
- components with cursors into app-state
- state-transition

- using transact! update! functions
- Local State

- transient state for a component (e.g. form values)
- Shared State

- globally shared via app root component

Om - State - Undo!

http://jackschaedler.github.io/goya/

http://jackschaedler.github.io/goya/
http://jackschaedler.github.io/goya/

Om - Component communication

- Inter-component communication
- via mutating cursor (not good!)
- Using core.async channels
- callbacks

Om - UI

- Pluggable Templating
- clojure DSL

- library: Sablono
- HTML selector style

- library: kioo

Om Root Component

❖ Navbar
➢ Monitor
➢ Explore

❖ Collections Sidebar
➢ Collections
➢ New Button

❖ Documents List
➢ Documents
➢ Count Badge

Om Component Tree

Alternatives to Om

- Reagent

Reagent
● ClojureScript interface to React
● Uses implementation of atom, called RAtom, for state management
● RAtoms can be shared at will: globally or locally (closure), no matter

structure of component tree
● Components are "just" functions that

○ accept props
○ can deref atom(s)
○ return something renderable by React
○ may return a closure, useful for setting up local state

● Components are only re-rendered when
○ props change
○ watched atoms change

(you're automatically watching when dereffing one)

Example

More complicated example
fmamsclj.reagent.cljs
● animals-state contains set with animals retrieved from server
● crud operations: add, delete, change are done asynchronously in go blocks

and state is updated using response from server
● each table row has a local atom shared with its fields for update
● editable component: renders itself as text or input depending on click on

button "Edit"
● buttons are disabled if relevant input is not valid
● table is sorted automatically by name of animal

Let's see the code and the running app

https://github.com/borkdude/FP-AMS-ClojureScript-talk

My experiencewith Om and Reagent

● Both awesome
● Added value on top of React (which is

awesome in itself)
● Reagent is simple, flexible, straightforward

May be a bit overlooked by newcomers
More clojure-ish and less verbose than Om

Questions?

