
ClojureScript
interfaces to React

Michiel Borkent
@borkdude

Øredev, November 6th 2014

https://twitter.com/borkdude
https://twitter.com/borkdude

Michiel Borkent (@borkdude)

● Clojure(Script) developer at
● Clojure since 2009
● Former lecturer, taught Clojure

https://twitter.com/borkdude

Full Clojure stack example @ Finalist
Commercial app.

Fairly complex UI

● Menu: 2 "pages"

Page 1:

Dashboard. Create new or select
existing entity to work on.

Then:

● Wizard 1
○ Step 1..5
○ Each step has a

component
● Wizard 1 - Step2

○ Wizard 2
■ Step 1'
■ Step 2'

Full Clojure stack examples @ Finalist

Step 2 of inner wizard:

● Three dependent dropdowns
+ backing ajax calls

● Crud table of added items +
option to remove

● When done: create
something based on all of
this on server and reload
entire "model" based on
what server says

Because of React + Om we didn't
have to think about updating DOM
performantly or keeping "model" up
to date.

Agenda

● What is React?
● Om
● Reagent

What is React?

React
● Developed by Facebook
● Helps building reusable and composable UI

components
● Unidirectional Data Flow
● Less need for re-rendering logic
● Leverages virtual DOM for performance
● Can render on server to make apps crawlable

/** @jsx React.DOM */

var Counter = React.createClass({

 getInitialState: function() {

 return {counter: this.props.initialCount};

 },

 inc: function() {

 this.setState({counter: this.state.counter + 1});

 },

 render: function() {

 return <div>

 {this.state.counter}

 <button onClick={this.inc}>x</button>

 </div>;

 }

});

React.renderComponent(<Counter initialCount={10}/>, document.body);

ClojureScript interfaces

Prior knowledge
(def my-atom (atom 0))
@my-atom ;; 0
(reset! my-atom 1)
(reset! my-atom (inc @my-atom)) ;; bad idiom
(swap! my-atom (fn [old-value]
 (inc old-value)))
(swap! my-atom inc) ;; same
@my-atom ;; 4

Before React: manual DOM edits
(add-watch greeting-form :form-change-key
 (fn [k r o n]
 (dispatch/fire :form-change {:old o :new n})))

(dispatch/react-to #{:form-change}
 (fn [_ m]
 (doseq [s (form-fields-status m)]
 (render-form-field s))
 (render-button [(-> m :old :status)
 (-> m :new :status)])))

source: http://clojurescriptone.com/documentation.html

http://clojurescriptone.com/documentation.html

ClojureScript interfaces

Quiescent - Luke vanderHart

Om - David Nolen

Reagent (was: Cloact) - Dan Holmsand

React + ClojureScript
Both Om and Reagent leverage:

● immutability for faster comparison in
shouldComponentUpdate

● Fewer redraws by batching updates with
requestAnimationFrame

Om
● Opinionated library by David Nolen
● One atom for app state
● Props: narrowed scope of app state (cursor)

(def app-state (atom {:counter1 {:count 10}
 :counter2 {:count 11}}))

(defn main [app owner]
 (om/component
 (dom/div nil
 (om/build counter (:counter1 app))
 (om/build counter (:counter2 app)))))

Om
● Communication between components via

○ setting init-state / state (parent -> child)
○ callbacks (child -> parent)
○ app-state
○ core.async

● Explicit hooks into React lifecycle via ClojureScript
protocols

● Follows React semantics closely (e.g. local state
changes cause re-rendering)

(def app-state (atom {:counter 10}))

(defn app-state-counter [app owner]

 (reify

 om/IRender

 (render [_]

 (dom/div nil

 (:counter app)

 (dom/button

 #js {:onClick

 #(om/transact! app :counter inc)}

 "x")))))

(om/root

 app-state-counter

 app-state

 {:target (. js/document (getElementById "app"))})

Goya pixel editor

http://jackschaedler.github.io/goya/
http://jackschaedler.github.io/goya/

Some catches
● Large vocabulary around cursors: app(-state), owner, build,

cursors, ref-cursors, root, update!, update-state!,
transact!, opts

● Cursor behaves differently depending on lifecycle
● Strong correspondence between component tree structure and app state

structure (ref-cursors are supposed to solve this)
● Heavy use of callbacks or core.async to make components reusable

(should not rely on app-state)
● Omission of #js reader literal, :className instead of :class, or nil if no

attributes used, fails silently or cryptic error messages

Reagent

Reagent
Uses RAtoms for state management
Components are 'just functions'™ that
● must return something renderable by React
● can deref RAtom(s)
● can accept props as args
● may return a closure, useful for setting up initial state

Reagent
● Components should be called like

[component args] instead of
(component args)

● Components are re-rendered when
○ props (args) change
○ referred RAtoms change

● Hook into React lifecycle via metadata on component functions

(def component
 (with-meta
 (fn [x]
 [:p "Hello " x ", it is " (:day @time-state)])
 {:component-will-mount #(println "called before mounting")
 :component-did-update #(js/alert "called after updating")}))

(def count-state (atom 10))

(defn counter []

 [:div

 @count-state

 [:button {:on-click #(swap! count-state inc)}

 "x"]])

(reagent/render-component [counter]

 (js/document.getElementById "app"))

RAtom

(defn local-counter [start-value]

 (let [count-state (atom start-value)]

 (fn []

 [:div

 @count-state

 [:button {:on-click #(swap! count-state inc)}

 "x"]])))

(reagent/render-component [local-counter 10]

 (js/document.getElementById "app"))

local
RAtom

CRUD!

(def animals-state (atom #{}))

(go (let [response
 (<! (http/get "/animals"))
 data (:body response)]
 (reset! animals-state (set data))))

RAtom with set containing
animal hash-maps

(...
 {:id 2,
 :type :animal,
 :name "Yellow-backed duiker",
 :species "Cephalophus silvicultor"}
 {:id 1,
 :type :animal,
 :name "Painted-snipe",
 :species "Rostratulidae"}

Render all animals from state
(defn animals []

 [:div

 [:table.table.table-striped

 [:thead

 [:tr

 [:th "Name"] [:th "Species"] [:th ""] [:th ""]]]

 [:tbody

 (map (fn [a]

 ^{:key (str "animal-row-" (:id a))}

 [animal-row a])

 (sort-by :name @animals-state))

 [animal-form]]]])

a row component
for each animal

form to create new animal

key needed for React to keep track of rows

(defn animal-row [a]
 (let [row-state (atom {:editing? false
 :name (:name a)
 :species (:species a)})
 current-animal (fn []
 (assoc a
 :name (:name @row-state)
 :species (:species @row-state)))]
 (fn []
 [:tr
 [:td [editable-input row-state :name]]
 [:td [editable-input row-state :species]]
 [:td [:button.btn.btn-primary.pull-right
 {:disabled (not (input-valid? row-state))
 :onClick (fn []
 (when (:editing? @row-state)
 (update-animal! (current-animal)))
 (swap! row-state update-in [:editing?] not))}
 (if (:editing? @row-state) "Save" "Edit")]]
 [:td [:button.btn.pull-right.btn-danger
 {:onClick #(remove-animal! (current-animal))}
 "\u00D7"]]])))

(defn field-input-handler
 "Returns a handler that updates value in atom map,
 under key, with value from onChange event"
 [atom key]
 (fn [e]
 (swap! atom
 assoc key
 (.. e -target -value))))

(defn input-valid? [atom]
 (and (seq (-> @atom :name))
 (seq (-> @atom :species))))

(defn editable-input [atom key]
 (if (:editing? @atom)
 [:input {:type "text"
 :value (get @atom key)
 :onChange (field-input-handler atom key)}]
 [:p (get @atom key)]))

(defn remove-animal! [a]
 (go (let [response
 (<! (http/delete (str "/animals/"
 (:id a))))]
 (if (= (:status response)
 200)
 (swap! animals-state remove-by-id (:id a))))))

(defn update-animal! [a]
 (go (let [response
 (<! (http/put (str "/animals/" (:id a))
 {:edn-params a}))
 updated-animal (:body response)]
 (swap! animals-state
 (fn [old-state]
 (conj
 (remove-by-id old-state (:id a))
 updated-animal))))))

replace updated
animal retrieved
from server

if server says:
"OK!", remove
animal from
CRUD table

Live demo

If you want to try yourself. Code and slides at:
https://github.com/borkdude/oredev2014

https://github.com/borkdude/oredev2014
https://github.com/borkdude/oredev2014

My experience with Om and Reagent
● Both awesome
● Added value to React
● Om encourages snapshot-able apps but:

○ surprises
○ large vocabulary

● Reagent
○ easy to learn and use
○ readable

