
Reagent
a ClojureScript interface to React

React Amsterdam Meetup
12 Feb. 2015

Michiel Borkent
Twitter: @borkdude
Email: michielborkent@gmail.com

● Clojure(Script) developer at
● Clojure since 2009
● Former lecturer, taught Clojure

https://twitter.com/borkdude
mailto:michielborkent@gmail.com

Full Clojure stack example @ Finalist
Commercial app.

Fairly complex UI

● Menu: 2 "pages"

Page 1:

Dashboard. Create new or select
existing entity to work on.

Then:

● Wizard 1
○ Step 1..5
○ Each step has a

component
● Wizard 1 - Step2

○ Wizard 2
■ Step 1'
■ Step 2'

Full Clojure stack examples @ Finalist

Step 2 of inner wizard:

● Three dependent dropdowns
+ backing ajax calls

● Crud table of added items +
option to remove

● When done: create
something based on all of
this on server and reload
entire "model" based on
what server says

Because of React + Om we didn't
have to think about updating DOM
performantly or keeping "model" up
to date.

Agenda

● Intro
● A little Clojure syntax
● Hiccup
● ClojureScript atoms
● Reagent

Syntax

f(x) -> (f x)

Syntax

if (...) {

 ...

} else { ->

 ...

}

(if ...
 ...
 ...)

Data literals

Symbol: :a

Vector: [1 2 3 4]

Hash map: {:a 1, :b 2}

Set: #{1 2 3 4}

List: '(1 2 3 4)

Hiccup
[:a {:href "/logout"}

 "Logout"]

[:div#app.container

 [:h2 "Welcome"]]

Logout

<div id="app" class="container">

 <h2>Welcome</h2>

</div>

ClojureScript atoms
(def my-atom (atom 0))
@my-atom ;; 0
(reset! my-atom 1)
(reset! my-atom (inc @my-atom)) ;; bad idiom
(swap! my-atom (fn [old-value]
 (inc old-value)))
(swap! my-atom inc) ;; same
@my-atom ;; 4

Reagent
ClojureScript library around React
Uses RAtoms for state (global or local)
Components are 'just functions'™ that
● must return something renderable by React
● can deref RAtom(s)
● can accept props as args
● may return a closure, useful for setting up initial state

Reagent
● Components should be called like

[component args] instead of
(component args)

● Components are re-rendered when
○ props (args) change
○ referred RAtoms change

● Hook into React lifecycle via metadata on component functions

(def component
 (with-meta
 (fn [x]
 [:p "Hello " x ", it is " (:day @time-state)])
 {:component-will-mount #(println "called before mounting")
 :component-did-update #(.focus (reagent/dom-node %))}))

(def count-state (atom 10))

(defn counter []

 [:div

 @count-state

 [:button {:on-click #(swap! count-state inc)}

 "x"]])

(reagent/render-component [counter]

 (js/document.getElementById "app"))

RAtom

(defn local-counter [start-value]

 (let [count-state (atom start-value)]

 (fn []

 [:div

 @count-state

 [:button {:on-click #(swap! count-state inc)}

 "x"]])))

(reagent/render-component [local-counter 10]

 (js/document.getElementById "app"))

local
RAtom

CRUD!

(def animals-state (atom #{}))

(go (let [response
 (<! (http/get "/animals"))
 data (:body response)]
 (reset! animals-state (set data))))

RAtom with set containing
animal hash-maps

(...
 {:id 2,
 :type :animal,
 :name "Yellow-backed duiker",
 :species "Cephalophus silvicultor"}
 {:id 1,
 :type :animal,
 :name "Painted-snipe",
 :species "Rostratulidae"}

Render all animals from state
(defn animals []

 [:div

 [:table.table.table-striped

 [:thead

 [:tr

 [:th "Name"] [:th "Species"] [:th ""] [:th ""]]]

 [:tbody

 (map (fn [a]

 ^{:key (str "animal-row-" (:id a))}

 [animal-row a])

 (sort-by :name @animals-state))

 [animal-form]]]])

a row component
for each animal

form to create new animal

key needed for React to keep track of rows

(defn animal-row [a]
 (let [row-state (atom {:editing? false
 :name (:name a)
 :species (:species a)})
 current-animal (fn []
 (assoc a
 :name (:name @row-state)
 :species (:species @row-state)))]
 (fn []
 [:tr
 [:td [editable-input row-state :name]]
 [:td [editable-input row-state :species]]
 [:td [:button.btn.btn-primary.pull-right
 {:disabled (not (input-valid? row-state))
 :onClick (fn []
 (when (:editing? @row-state)
 (update-animal! (current-animal)))
 (swap! row-state update-in [:editing?] not))}
 (if (:editing? @row-state) "Save" "Edit")]]
 [:td [:button.btn.pull-right.btn-danger
 {:onClick #(remove-animal! (current-animal))}
 "\u00D7"]]])))

(defn field-input-handler
 "Returns a handler that updates value in atom map,
 under key, with value from onChange event"
 [atom key]
 (fn [e]
 (swap! atom
 assoc key
 (.. e -target -value))))

(defn input-valid? [atom]
 (and (seq (-> @atom :name))
 (seq (-> @atom :species))))

(defn editable-input [atom key]
 (if (:editing? @atom)
 [:input {:type "text"
 :value (get @atom key)
 :onChange (field-input-handler atom key)}]
 [:p (get @atom key)]))

(defn remove-animal! [a]
 (go (let [response
 (<! (http/delete (str "/animals/"
 (:id a))))]
 (if (= (:status response)
 200)
 (swap! animals-state remove-by-id (:id a))))))

(defn update-animal! [a]
 (go (let [response
 (<! (http/put (str "/animals/" (:id a))
 {:edn-params a}))
 updated-animal (:body response)]
 (swap! animals-state
 (fn [old-state]
 (conj
 (remove-by-id old-state (:id a))
 updated-animal))))))

replace updated
animal retrieved
from server

if server says:
"OK!", remove
animal from
CRUD table

Code and slides at:
https://github.com/borkdude/react-amsterdam

Learn more at https://github.com/reagent-project

https://github.com/borkdude/react-amsterdam
https://github.com/borkdude/react-amsterdam
https://github.com/reagent-project

